
voxelmap
Release 4.3

Andrew Garcia, Ph.D.

Jan 13, 2024

CONTENTS

1 Let’s make 3-D models with Python! 1
1.1 Key Features . 2
1.2 Colab Notebook . 2

2 Contents 5
2.1 Usage . 5
2.2 API Reference . 26

3 Examples 37
3.1 Voxel Model to 3-D Mesh . 37
3.2 3-D Reconstruction . 38

4 Whitepapers 41
4.1 ImageMesh : A Convex Hull based 3D Reconstruction Method . 41

Python Module Index 47

Index 49

i

ii

CHAPTER

ONE

LET’S MAKE 3-D MODELS WITH PYTHON!

Fig. 1: Check out voxelmap’s open-source on GitHub

Ever wanted to make simple 3-D models from numpy arrays? Now you can do that with voxelmap ! Voxelmap is a
Python library for making voxel and three-dimensional models from NumPy arrays. It was initially made to streamline
3-D voxel modeling by assigning each integer in an array to a voxel. Now, methods are being developed for mesh
representations, such as ImageMesh, voxel-to-mesh transformation and vice-versa.

Check out the Usage section for further information, including how to Installation the project. For some quick examples
/ templates, check out the next section.

1

https://github.com/andrewrgarcia/voxelmap
https://github.com/andrewrgarcia/voxelmap

voxelmap, Release 4.3

1.1 Key Features

Draw voxels from integer ar-
rays

Colormap Block Coloring 3-D Reconstruction

Low-Poly 3-D Mesh Mapping
from Image

Voxel Model to 3-D Mesh 3-D Model Numpy Manipulation and
Blender Integration

1.2 Colab Notebook

While we offer an interactive tutorial via a Colab notebook, we recommend using this site as your primary guide
instead. Please note that the Colab notebook is currently out-of-date and may not reflect the most recent features and
functionality of Voxelmap. We are continually updating our website to ensure the latest information and resources are
available to our users.

2 Chapter 1. Let’s make 3-D models with Python!

voxelmap, Release 4.3

Note: This project is under active development.

1.2. Colab Notebook 3

https://colab.research.google.com/drive/1RMEMgZHlk_tKAzfS4QfXLJV9joDgdh8N?usp=sharing

voxelmap, Release 4.3

4 Chapter 1. Let’s make 3-D models with Python!

CHAPTER

TWO

CONTENTS

2.1 Usage

2.1.1 Installation

It is recommended you use voxelmap through a virtual environment. You may follow the below simple protocol to
create the virtual environment, run it, and install the package there:

$ virtualenv venv
$ source venv/bin/activate
(.venv) $ pip install voxelmap

To exit the virtual environment, simply type deactivate. To access it at any other time again, enter with the above
source command.

2.1.2 The hashblocks Constructor Variable

Voxelmap was originally made to handle third-order integer arrays of the form np.array((int,int,int)) as
blueprints to 3-D voxel models.

While “0” integers are used to represent empty space, non-zero integers are used to define a distinct voxel type and
thus, they are used as keys for such voxel type to be mapped to a specific color and alpha transparency. These keys
are stored in a map (also known as “dictionary”) internal to the voxelmap.Model class called hashblocks.

The hashblocks dictionary contains an entry for each integer key, where the corresponding value is a list. This list
contains two elements: a string that represents the color in either the hex format (#rrggbb) or as a color label (e.g.,
‘red’) as the first element, and a float between 0 and 1 that represents the alpha transparency as the second element.
The dictionary’s structure and call method are shown below:

import voxelmap as vxm

model = vxm.Model()

model.hashblocks = {
key_1 (int): ['#rrggbb' (string) ,alpha (float)]
key_2 (int): ['#rrggbb' (string) ,alpha (float)]
.
.
.

}

5

voxelmap, Release 4.3

2.1.3 Draw voxels from integer arrays

We present the creation of two models using arrays A and B, with the first code block dedicated to the generation of
the first model (array A) containing thorough comments for better understanding of the voxelmap functions.

'''Array A'''

#make a 10x10x10 integer array with values between 0 and 3 with sampling probabilities "p
→˓"
freqs = [300,20,40,20]
A = np.random.choice([0,1,2,3],p=freqs/np.sum(freqs),size=(10, 10, 10))

#incorporate array to Model structure
model = vxm.Model(A)

#add voxel colors and alpha-transparency for integer values 0 - 9 (needed for `custom`␣
→˓coloring)
colors = ['#ff000ff', 'yellow', 'lime']

alpha_yellow=0.4 # define alpha transparency for yellow colored voxels

#assign colors and alpha to integers
k=1
for i in colors:

model.hashblocks[k] = [i,1] if i != 'yellow' else [i,alpha_yellow]
k+=1

model.draw(coloring='custom',len_voxel=0.9, background_color='#ffffff')

'''Array B'''

B = np.random.randint(1,30,(7,7,7))
vxm.Model(B).draw(coloring='cmap: cool, alpha:1.0',geometry='particles',len_voxel=1,
→˓background_color='w')

6 Chapter 2. Contents

voxelmap, Release 4.3

It’s worth noting the versatility of voxelmap, allowing the creation of 3D models using just one line of code, as demon-
strated with the generation of array B.

2.1.4 Draw voxels from coordinate arrays

Voxelmap has the capability to create a voxel model using an array that defines the coordinates of each voxel in x, y,
and z space. The variable “data.xyz” takes a third-order array, where the rows represent the number of voxels and the
columns contain the 3 coordinates for each axis.

Additionally, the “data.rgb” input can be used to set the color of each voxel in the “data.xyz” object using the hex format
“xxxxxx” (for example, “ffffff” for white).

The algorithm works with negative coordinates as well, as demonstrated in the example below. This example showcases
two cases, where the second case places the spheres farther apart by reducing the characteristic length scale of the
particles (i.e., the radius) using the “len_voxel” keyword argument.

cubes = vxm.Model()
num_voxels = 30
cubes.XYZ = np.random.randint(-1,1,(num_voxels,3))+np.random.random((num_voxels,3)) ␣
→˓ # random x,y,z locs for 10 voxels
cubes.RGB = [hex(np.random.randint(0.5e7,1.5e7))[2:] for i in range(num_voxels)] #␣
→˓define random colors for the 10 voxels
cubes.sparsity = 10

spaces out coordinates
cubes.load(coords=True)
cubes.hashblocks

print(cubes.hashblocks)

print(cubes.XYZ) # print the xyz coordinate data
cubes.draw(coloring='custom',geometry='particles',len_voxel=1, background_color='#ffffff
→˓',window_size=[416, 416])

(continues on next page)

2.1. Usage 7

voxelmap, Release 4.3

(continued from previous page)

increase spacing by setting the `len_voxel` characteristic side-length to a lower␣
→˓number.
cubes.draw(coloring='custom',geometry='particles',len_voxel=0.5, background_color='
→˓#ffffff',window_size=[416, 416])

>>> [Out]
Voxelmap draw. Using custom colors:
self.hashblocks =
{1: ['#4d3206', 1], 2: ['#4f29cc', 1], 3: ['#52c64a', 1], 4: ['#5c8c76', 1], 5: ['
→˓#617fc0', 1], 6: ['#6622fa', 1], 7: ['#668b58', 1], 8: ['#6cb872', 1], 9: ['#701eda',␣
→˓1], 10: ['#76aa8b', 1], 11: ['#783ec3', 1], 12: ['#7b2af8', 1], 13: ['#80e30b', 1],␣
→˓14: ['#8105f8', 1], 15: ['#842c4c', 1], 16: ['#89c2d5', 1], 17: ['#934959', 1], 18: ['
→˓#9a539c', 1], 19: ['#9f3fae', 1], 20: ['#a5b909', 1], 21: ['#a9f373', 1], 22: ['#b818a6
→˓', 1], 23: ['#bcf032', 1], 24: ['#bd0374', 1], 25: ['#bdd493', 1], 26: ['#c20eff', 1],␣
→˓27: ['#c9c6fe', 1], 28: ['#c9ea55', 1], 29: ['#cc8e6f', 1], 30: ['#d553d4', 1]}

>>> [Out]
Voxelmap draw. Using custom colors:
self.hashblocks =
{1: ['#4d3206', 1], 2: ['#4f29cc', 1], 3: ['#52c64a', 1], 4: ['#5c8c76', 1], 5: ['
→˓#617fc0', 1], 6: ['#6622fa', 1], 7: ['#668b58', 1], 8: ['#6cb872', 1], 9: ['#701eda',␣
→˓1], 10: ['#76aa8b', 1], 11: ['#783ec3', 1], 12: ['#7b2af8', 1], 13: ['#80e30b', 1],␣
→˓14: ['#8105f8', 1], 15: ['#842c4c', 1], 16: ['#89c2d5', 1], 17: ['#934959', 1], 18: ['
→˓#9a539c', 1], 19: ['#9f3fae', 1], 20: ['#a5b909', 1], 21: ['#a9f373', 1], 22: ['#b818a6
→˓', 1], 23: ['#bcf032', 1], 24: ['#bd0374', 1], 25: ['#bdd493', 1], 26: ['#c20eff', 1],␣
→˓27: ['#c9c6fe', 1], 28: ['#c9ea55', 1], 29: ['#cc8e6f', 1], 30: ['#d553d4', 1]}

8 Chapter 2. Contents

voxelmap, Release 4.3

2.1.5 Colormap Block Coloring

The coloring kwarg for the draw method now has a 'cmap' string option to assign colors from a colormap to the defined
voxel types (i.e. the non-zero integers in the 3-D arrays). Download the RANDOMWALK.JSON file and save it in the
same directory where you are running these examples. If you inspect the .json file, you’ll see the following structure:

{
"hashblocks": {},
"size": [300, 300, 300],
"coords": [

[146, 149, 152],
[146, 150, 152],
[147, 148, 153],
[147, 148, 154],
.
.
.
[197, 142, 132],

(continues on next page)

2.1. Usage 9

https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/model_files/randomwalk.json

voxelmap, Release 4.3

(continued from previous page)

[197, 143, 132]
],
"val": [7, 6, 24, 25, . . ., 3182, 3183]

}

The file contains information about a 3-D array, including its dimensions (specified by the size key), the 3-D coor-
dinates of its non-zero integers (specified by the coords key), and the corresponding integer values (specified by the
val key). It’s worth noting that the hashblocks dictionary is currently empty.

When using the ‘cmap:’ option to color the array, the hashblocks dictionary is built based on a linear relation between
the chosen colormap and the values of the integers in the array, similar to how a gradient coloring would work. In the
code block below, the RANDOMWALK.JSON model is drawn using the gnuplot2 colormap with an alpha of 1.

Note that this file generates a model that requires a substantial amount of memory, which may result in a longer rendering
time.

model = vxm.Model()

model.load('randomwalk.json')
model.draw(coloring='cmap: gnuplot2, alpha:1',geometry='particles',background_color='w')

10 Chapter 2. Contents

https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/model_files/randomwalk.json

voxelmap, Release 4.3

Colormap Block Coloring with Integer Tagging

The hashblocks map can be used in combination with the ‘cmap’ coloring option to selectively color-tag specific
voxels based on their type. To accomplish this, we can modify the previous code block by adding a model.hashblocks
declaration after model.load(). This will allow us to color the voxels represented by the integers 743, 500, and 256 in
magenta, and the voxel represented by integer 2 in cyan.

model = vxm.Model()

model.load('randomwalk.json')

add the hashblocks voxel assignments
model.hashblocks = {
743: ['magenta',1],
500: ['magenta',1],
256: ['magenta',1],
2: ['cyan',1]

}

model.draw(coloring='cmap: gnuplot2, alpha:1',geometry='particles',background_color='w')

The ability to use the hashblocks map with the ‘cmap’ coloring option can be a valuable feature when we need to
represent multiple relationships simultaneously. For example, we can use a gradient of values described by the colormap
to color the array, while simultaneously highlighting specific voxels with hashblocks. This technique can have numerous

2.1. Usage 11

voxelmap, Release 4.3

applications in fields such as 3-D modeling, medical imaging, and coarse-grained molecular modeling, among others.

2.1.6 3-D Mapping of an Image

Here we map the synthetic topography LAND IMAGE (.png) to a 3-D model using the ImageMap method from the
voxelmap.Model class.

#import packages
import cv2
import matplotlib.pyplot as plt

plt.imshow(cv2.imread('docs/img/land.png')) # display fake land topography .png␣
→˓file as plot
plt.axis('off')
plt.show()

#import packages
import numpy as np
from matplotlib import cm

model = vxm.Model(file='docs/img/land.png') # incorporate fake land␣
→˓topography .png file to voxelmap.Image class
print(model.array.shape)

The image is then resized for the voxel draw with the matplotlib method i.e. Model().draw_mpl. This is done with
cv2.resize, resizing the image from 1060x1060 to 50x50. After resizing, we convolve the image to obtain a less
sharp color shift between the different gray regions with the cv2.blur method:

model.array = cv2.resize(model.array, (50,50), interpolation = cv2.INTER_AREA)
print(model.array.shape)

model.array = cv2.blur(model.array,(10,10)) # blur the image for realiztic topography␣
→˓levels
plt.imshow(model.array) # display fake land topography .png file as plot
plt.axis('off')
plt.show()

12 Chapter 2. Contents

https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/docs/img/land.png

voxelmap, Release 4.3

After this treatment, the resized and blurred image is mapped to a 3-D voxel model using the ImageMap method from
the Model class:

model.array = model.ImageMap(12) # mapped to 3d with a depth of 12 voxels
print(model.array.shape)

model.draw('none',background_color='#ffffff')

2.1.7 Low-Poly 3-D Mesh Mapping from Image

The ImageMesh method creates a low-poly mesh model from an Image using an algorithm developed by Andrew Garcia
where 3-D convex hull is performed on separate “cuts” or sectors from the image (see: ImageMesh : A Convex Hull
based 3D Reconstruction Method).

This can decrease the size of the 3-D model and the runtime to generate it significantly, making the runtime proportional
to the number of sectors rather than the number of pixels. Sectors are quantified with the L_sectors kwarg, which is
the length scale for the number of sectors in the grid.

We can see that the mesh model can be calculated and drawn with matplotlib plot=mpl option even from a large image
of 1060x1060 without resizing:

2.1. Usage 13

voxelmap, Release 4.3

import voxelmap as vxm
import cv2

model = vxm.Model(file='docs/img/land.png') # incorporate fake land topography .
→˓png file

print(model.array.shape)

model.ImageMesh(out_file='scene.obj', L_sectors = 15, trace_min=5, rel_depth = 20,␣
→˓figsize=(15,12), plot='mpl')

This ImageMesh transformation is also tested with a blurred version of the image with cv2.blur. A more smooth
low-poly 3-D mesh is generated with this additional treatment. The topography seems more realistic:

model.array = cv2.blur(model.array,(60,60)) # blur the image for realiztic topography␣
→˓levels
model.ImageMesh(out_file='scene.obj', L_sectors = 15, trace_min=5, rel_depth = 20,␣
→˓figsize=(15,12), plot='mpl')

14 Chapter 2. Contents

voxelmap, Release 4.3

For a more customizable OpenGL rendering, img.MeshView() may be used on the above image:

import voxelmap as vxm
import numpy as np
import cv2 as cv

model = vxm.Model(file='docs/img/land.png') # incorporate fake land topography␣
→˓.png file
model.array = cv.blur(model.array,(100,100)) # blur the image for realistic␣
→˓topography levels

model.make() # resized to 1.0x original size i.e. not␣
→˓resized (default)

model.ImageMesh('land.obj', 12, 14, 1, False, figsize=(10,10))

model.MeshView(alpha=0.7,background_color='#3e404e',color='white',viewport=(700, 700))

2.1. Usage 15

voxelmap, Release 4.3

2.1.8 MarchingMesh : Turning Voxel Models to 3-D Mesh Representations

Click on the links below to save the files in the same directory you are running these examples:

DOG MODEL (.txt)

ISLAND MODEL (.txt)

The .txt files you downloaded were exported from Goxel projects.

Goxel is an open-source and cross-platform voxel editor which facilitates the graphical creation of voxel models. More
information by clicking the icon link below.

We first load those .txt files with the below voxelmap methods:

import voxelmap as vxm
import numpy as np

'''process argisle.txt from Goxel'''
theIsland = vxm.Model()
theIsland.load('argisle.txt')
theIsland.array = np.transpose(theIsland.array,(2,1,0)) #rotate island
theIsland.draw('custom',background_color='white')

'''process dog.txt from Goxel'''
Dog = vxm.Model()
Dog.load('dog.txt')

(continues on next page)

16 Chapter 2. Contents

https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/model_files/dog.txt
https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/model_files/argisle.txt
https://goxel.xyz/

voxelmap, Release 4.3

(continued from previous page)

Dog.array = np.transpose(Dog.array,(2,1,0)) #rotate dog
Dog.draw('custom',background_color='white')

The voxel models can be transformed to 3D mesh representations with voxelmap’s Model().MarchingMesh method,
which uses Marching Cubes from the scikit-image Python library.

'''MarchingMesh on island model'''
theIsland.array = vxm.resize_array(theIsland.array,(5,5,5)) #make array larger before␣
→˓mesh transformation
theIsland.MarchingMesh()
theIsland.MeshView(color='lime',wireframe=False,background_color='white',alpha=1,
→˓viewport=[700,700])

'''MarchingMesh on dog model'''
Dog.array = vxm.resize_array(Dog.array,(20,20,20)) #make array larger before mesh␣
→˓transformation
Dog.MarchingMesh()
Dog.MeshView(color='brown',wireframe=False,background_color='white',alpha=1,
→˓viewport=[700,700])

2.1. Usage 17

voxelmap, Release 4.3

Notice the self.array arrays were resized in both objects with the global voxelmap.resize_array method. This
was done to avoid the formation of voids that you still see on the dog mesh above. The MarchingMesh method has a
current limitation on small voxel models with low detail. It is not perfect, but this is an open-source package and it can
always be developed further by the maintainer and/or other collaborators.

2.1.9 Wavefront (.obj) file to 3-D Sparse Array

Voxelmap provides various features for converting Wavefront .obj files to its 3-D sparse arrays. However, the most
straightforward approach is to use the global voxelmap.objcast method.

Cube Model

To begin, let’s download the simple_cube.obj model file. If you take a look at the file, you’ll see that it specifies the z,
y, and x coordinates of each vertex. However, in order to convert this model to a voxel-based representation, we need
to define the spacing between points, since we’re transforming from continuous coordinates to the discrete dimensions
of a tensor.

To determine how the spacing affects the transformation from .obj to sparse array, we’ve provided a function below:

def draw_cube(spacing):

array = vxm.objcast('simple_cube.obj',spacing) # Cast obj file as a point-cloud 3-D␣
→˓numpy array

model = vxm.Model(array)
model.draw(coloring='custom: black',wireframe=True,wireframe_color='w',background_

→˓color='#000000',voxel_spacing=(1,1,1))

>>> draw_cube(spacing=1)
(see below)

18 Chapter 2. Contents

https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/model_files/simple_cube.obj

voxelmap, Release 4.3

>>> draw_cube(spacing=0.5)
(see below)

We can see a fractional spacing shows a more accurate model of a 2x2x2 supercube.

2.1. Usage 19

voxelmap, Release 4.3

Sphere Model

This second example demonstrates how voxelmap can be utilized to convert the sphere.obj MODEL into a discrete
voxel array, which can then be triangulated using the MarchingMesh local method.

def sphere_ptcloud(spacing):

Draw as point cloud of voxels
array = vxm.objcast('sphere.obj',spacing) # Cast obj file as a point-cloud 3-D numpy␣

→˓array
model = vxm.Model(array)
model.draw(coloring='custom: black',wireframe=True,wireframe_color='w',background_

→˓color='#000000',voxel_spacing=(1,1,1))

Draw as triangulated surface after applying Marching Cubes
model.objfile= f"scene_marchingmesh{spacing}.obj"
model.MarchingMesh()
model.MeshView(wireframe=True,background_color='k',alpha=1)

The spacing parameter is crucial when working with the sphere.obj model, which has fractional coordinates between
0 and 1. The transformation from continuous coordinates to a discrete tensor space involves floor-dividing the coordi-
nates, so using a spacing of 1 is likely to result in an unhelpful sparse 3-D tensor for voxel point cloud modeling. To
address this issue, we initially set the spacing to 10 and obtained the following results.

>>> sphere_ptcloud(spacing=10)
(see below)

It is important to note that the spacing parameter plays a crucial role in transforming the .obj model to a discrete tensor
space, especially when the model has fractional coordinates between 0 and 1. Setting a spacing value of 1 might not
produce a useful sparse 3-D tensor for voxel point cloud modeling. In this example with the sphere model, we set the
spacing to 10 and obtained satisfactory results.

>>> sphere_ptcloud(spacing=30)
(see below)

20 Chapter 2. Contents

https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/model_files/simple_cube.obj

voxelmap, Release 4.3

The MarchingMesh method typically output a Wavefront (.obj) file named scene.obj as default, but users can specify
a different name by changing the objfile variable in the constructor of the voxelmap.Model class. Once the file is
generated, it can be edited in software like Blender by importing it.

The above commands generated 2 MarchingMesh .obj files, scene_marchingmesh10.obj and
scene_marchingmesh30.obj for the different spacings chosen. These files can be imported simultaneously
to a Blender project, and they look like this:

2.1. Usage 21

https://www.blender.org/
https://www.blender.org/

voxelmap, Release 4.3

The larger spacing between voxels in a sphere can be observed to result in a larger overall size of the sphere.

3-D Model Numpy Manipulation and Blender Integration

What if we wanted to make a modification to the .obj file with Numpy and then save the new modified model as an
.obj file for additional treatment in other software like Blender? Here we show a use case for that. Let’s take the above
sphere_ptcloud() function and make the following changes:

def sphere_skewer():

array = vxm.objcast('sphere.obj',30) # Cast obj file as a point-cloud 3-D numpy array

#Numpy manipulation
for i in range(30):

x,y = np.random.randint(0,np.min(array.shape),2)
array[x,y,:] = 1

vxm.Model(array).save('pillars.obj') #save the array as an .obj file

model.objfile= f"pillars_mesh.obj"
model.MarchingMesh()
model.MeshView(wireframe=True,background_color='k',alpha=1)

The above code block loads the sphere.obj file, and casts it as a point-cloud 3D numpy array using the objcast
method. It then makes 30 pillars in random x-y coordinates using Numpy. After this, the modified Numpy array
containing the voxel model can be saved back to an .obj format as a NEW FILE using the local save method of the
voxelmap.Model class.

The new pillars.obj file can be viewed with voxelmap with the below command

>>> vxm.MeshView('pillars.obj',alpha=1,wireframe=True) # load for view with the global␣
→˓MeshView method
(see below)

And with Blender importing pillars_mesh.obj with the Import tool. Below are the outputs from the voxelmap (left)
and the Blender (right) approach:

22 Chapter 2. Contents

https://www.blender.org/

voxelmap, Release 4.3

2.1.10 3-D Voxel Model Reprocessing

Here we do some reprocessing of the above voxel models. Note that here we use the draw_mpl method, which is
voxelmap’s legacy method for voxel modeling and not its state-of-the-art. For faster and higher quality graphics with
more kwargs / drawing options, use voxelmap’s draw method instead.

Re-color with custom colors

using the hashblocks_add() method

theIsland.hashblocks_add(1,'yellow',1)
theIsland.hashblocks_add(2,'#333333',0.2)
theIsland.hashblocks_add(3,'cyan',0.75)
theIsland.hashblocks_add(4,'#000000')

theIsland.draw_mpl('custom',figsize=(5,5))

Dog.hashblocks = theIsland.hashblocks
print('black dog, yellow eyes, cyan tongue')
Dog.draw_mpl('custom',figsize=(5,5))

2.1. Usage 23

voxelmap, Release 4.3

defining them directly in the hashblocks dictionary

theIsland.hashblocks = {
1: ['cyan', 1],
2: ['#0197fd', 0.25],
3: ['#98fc66', 0.78],
4: ['#eeeeee', 1],
5: ['red', 1]}

theIsland.draw_mpl('custom',figsize=(7,7))

24 Chapter 2. Contents

https://goxel.xyz/
https://goxel.xyz/

voxelmap, Release 4.3

Save and Load Methods for voxelmap Model objects

Save the ghost dog model

If you’d like to save an array with customized color assignments, you may do so now with the Model().save()method.
This method saves the array data as a DOK hashmap and integrates this DOK hashmap with the Model.hashblocks color
information in a higher-order JSON file format:

#re-define colors for a ghost dog
Dog.hashblocks = {

1: ['cyan', 1],
2: ['#0197fd', 0.25],
3: ['#98fc66', 0.78],
4: ['#eeeeee', 1]}

#save
Dog.save('ghostdog.json')

Load ghost dog model

The Model().load() method processes the array and color information to a blank Model object. To load this data
into a “blank slate” and re-draw it, type the following:

defines a blank model
blank = vxm.Model()
print(blank.array)
print(blank.hashblocks)

blank.load('ghostdog.json')

print(blank.array[0].shape)
(continues on next page)

2.1. Usage 25

https://goxel.xyz/

voxelmap, Release 4.3

(continued from previous page)

print(blank.hashblocks)
blank.draw_mpl('custom',figsize=(7,7))

2.2 API Reference

2.2.1 Global Methods

As the methods are several, below are only listed the most pertinent global methods of voxelmap, in order of the lowest
level to highest level of applications to 3-D modeling operations.and classified in sub-sections:

Special

class voxelmap.objcast(filename='scene.obj', spacing=1)
Converts a Wavefront .obj file into a sparse, third-order (3-D) NumPy array to represent a point cloud model.

Parameters

filename
[str] Path to the .obj file. Defaults to ‘scene.obj’.

spacing
[float] Distance between points in the point cloud. Can be adjusted to create a denser or sparser point cloud.
Defaults to 1.

class voxelmap.matrix_toXY(array, mult)
Converts a 2D numpy array into an XYv coordinate matrix where v is the corresponding element in every x-y
coordinate.

26 Chapter 2. Contents

https://goxel.xyz/

voxelmap, Release 4.3

Parameters

array
[np.array(int,int)] The 2D numpy array to be converted to an XYv coordinate matrix.

mult
[int or float] The multiplication factor to be applied to the elements in the matrix.

class voxelmap.tensor_toXYZ(tensor, mult)
Converts a 3D numpy array (tensor) into an XYZ coordinate matrix.

Parameters

tensor
[np.array(int,int,int)] The 3D array (tensor) to be converted to XYZ coordinates.

mult
[int or float] The multiplication factor to be applied to all the coordinates.

Load and Save

class voxelmap.load_array(filename)
Loads a pickled numpy array with filename name

class voxelmap.save_array(array, filename)
Saves an array array with filename name using the pickle module

class voxelmap.tojson(filename, array, hashblocks={})
Save 3-D array and hashblocks color mapping as JSON file

class voxelmap.load_from_json(filename)
Load JSON file to object

Array Manipulation

class voxelmap.resize_array(array, mult=(2, 2, 2))
Resizes a three-dimensional array by the three dim factors specified by mult tuple. Converts to sparse array of
0s and 1s

Parameters

array
[np.array(int,int,int)] array to resize

mult: tuple(float,float,float)
depth length width factors to resize array with. e.g 2,2,2 resizes array to double its size in all dims

class voxelmap.roughen(array, kernel_level=1)
Makes a 3d array model rougher by a special convolution operation. Uses voxelmap.random_kernel_convolve.

2.2. API Reference 27

voxelmap, Release 4.3

Parameters

array
[np.array(int,int,int)] array to roughen up

kernel_level: int
length scale (size) of random kernels used. The smallest scale (=1) gives the roughest transformation.

class voxelmap.random_kernel_convolve(array, kernel, random_bounds=(-10, 10))
Applies a three-dimensional convolution with a randomly-mutating kernel on a 3-D array which changes for
every array site when random_bounds are set to tuple. If random_bounds are set to False, convolution occurs in
constant mode for the specified kernel.

Parameters

array
[np.array(int,int,int)] array to convolve

kernel: np.array(int,int,int)
kernel to use for convolution. If random_bounds are set to tuple, only the kernel’s shape is used to specify
the random_kernels

random_bounds
[tuple(int,int) OR bool] see above explanation.

Mapping

class voxelmap.MarchingMesh(array, out_file='scene.obj', level=0, spacing=(1.0, 1.0, 1.0),
gradient_direction='descent', step_size=1, allow_degenerate=True,
method='lewiner', mask=None, plot=False, figsize=(4.8, 4.8))

Marching cubes on sparse 3-D integer voxelmap arrays (GLOBAL)

Parameters

array: np.array((int/float,int/float,int/float))
3-D array for which to run the marching cubes algorithm

out_file
[str] name and/or path for Wavefront .obj file output. This is the common format for OpenGL 3-D model
files (default: model.obj)

level
[float, optional] Contour value to search for isosurfaces in volume. If not given or None, the average of the
min and max of vol is used.

spacing
[length-3 tuple of floats, optional] Voxel spacing in spatial dimensions corresponding to numpy array in-
dexing dimensions (M, N, P) as in volume.

gradient_direction
[string, optional] Controls if the mesh was generated from an isosurface with gradient descent toward ob-
jects of interest (the default), or the opposite, considering the left-hand rule. The two options are: – ‘de-
scent’ : Object was greater than exterior – ‘ascent’ : Exterior was greater than object

28 Chapter 2. Contents

voxelmap, Release 4.3

step_size
[int, optional] Step size in voxels. Default 1. Larger steps yield faster but coarser results. The result will
always be topologically correct though.

allow_degenerate
[bool, optional] Whether to allow degenerate (i.e. zero-area) triangles in the end-result. Default True. If
False, degenerate triangles are removed, at the cost of making the algorithm slower.

method: str, optional
One of ‘lewiner’, ‘lorensen’ or ‘_lorensen’. Specify which of Lewiner et al. or Lorensen et al. method will
be used. The ‘_lorensen’ flag correspond to an old implementation that will be deprecated in version 0.19.

mask
[(M, N, P) array, optional] Boolean array. The marching cube algorithm will be computed only on True
elements. This will save computational time when interfaces are located within certain region of the volume
M, N, P-e.g. the top half of the cube-and also allow to compute finite surfaces-i.e. open surfaces that do
not end at the border of the cube.

plot: bool
plots a preliminary 3-D triangulated image if True

class voxelmap.MeshView(objfile='scene.obj', color='black', alpha=1, wireframe=True,
wireframe_color='white', background_color='#cccccc', viewport=[1024, 768])

Triangulated mesh view with PyVista (GLOBAL)

Parameters

objfile: string
.obj file to process with MeshView [in GLOBAL function only]

color
[string / hexadecimal] mesh color. default: ‘pink’

alpha
[float] opacity transparency range: 0 - 1.0. Default: 0.5

wireframe: bool
Represent mesh as wireframe instead of solid polyhedron if True (default: False).

wireframe_color: string / hex
edges or wireframe colors

background_color
[string / hexadecimal] color of background. default: ‘pink’

viewport
[(int,int)] viewport / screen (width, height) for display window (default: 80% your screen’s width & height)

2.2. API Reference 29

voxelmap, Release 4.3

2.2.2 Local Methods to Model class

class voxelmap.Model(array=[], file='')

__init__(array=[], file='')
Model structure. Calls 3-D array to process into 3-D model.

Parameters

array
[np.array(int)] array of the third-order populated with discrete, non-zero integers which may represent
a voxel block type

file
[str] file name and/or path for image file

hashblocks
[dict[int]{str, float }] a dictionary for which the keys are the integer values on the discrete arrays (above)
an the values are the color (str) for the specific key and the alpha for the voxel object (float)

colormap
[< matplotlib.cm object >] colormap to use for voxel coloring if coloring kwarg in Model.draw method
is not voxels. Default: cm.cool

alphacm
[float] alpha transparency of voxels if colormap option is chosen. default: opaque colormap (alpha=1)

– FOR FILE PROCESSING –

file
[str] file name a/or path for goxel txt file

– FOR XYZ COORDINATE ARRAY PROCESSING –

XYZ
[np.array(float)] an array containing the x,y,z coordinates of shape number_voxel-locations x 3 [for
each x y z]

RGB
[list[str]] a list for the colors of every voxels in xyz array (length: number_voxel-locations)

sparsity
[float] a factor to separate the relative distance between each voxel (default:10.0 [> 50.0 may have
memory limitations])

ImageMap(depth=5, out_file='scene.obj', plot=False)
Map image or 2-D array (matrix) to 3-D array

30 Chapter 2. Contents

voxelmap, Release 4.3

Parameters

depth
[int] depth in number of voxels (default = 5 voxels)

out_file
[str] name and/or path for Wavefront .obj file output. This is the common format for OpenGL 3-D
model files (default: model.obj)

plot: bool / str
plots a preliminary 3-D triangulated image if True with PyVista. For more plotting options, plot by
calling MeshView separately.

ImageMesh(out_file='scene.obj', L_sectors=4, rel_depth=0.5, trace_min=1, plot=True, figsize=(4.8, 4.8),
verbose=False)

3-D triangulation of 2-D images / 2-D arrays (matrices) with a Convex Hull algorithm (Andrew Garcia,
2022)

Parameters

out_file
[str] name and/or path for Wavefront .obj file output. This is the common format for OpenGL 3-D
model files (default: model.obj)

L_sectors: int
length scale of Convex Hull segments in sector grid, e.g. L_sectors = 4 makes a triangulation of 4 x 4
Convex Hull segments

rel_depth: float
relative depth of 3-D model with respect to the image’s intensity magnitudes (default: 0.50)

trace_min: int
minimum number of points in different z-levels to triangulate per sector (default: 1)

plot: bool / str
plots a preliminary 3-D triangulated image if True [with PyVista (& with matplotlib if plot = ‘img’).
For more plotting options, plot with Meshview instead.

MarchingMesh(voxel_depth=12, level=0, spacing=(1.0, 1.0, 1.0), gradient_direction='descent', step_size=1,
allow_degenerate=True, method='lewiner', mask=None, plot=False, figsize=(4.8, 4.8))

Marching cubes on 3-D mapped image or 3-D array

Parameters

voxel_depth
[int (optional)] depth of 3-D mapped image on number of voxels (if file [image] is to be processed /
i.e. specified)

level
[float, optional] Contour value to search for isosurfaces in volume. If not given or None, the average
of the min and max of vol is used.

spacing
[length-3 tuple of floats, optional] Voxel spacing in spatial dimensions corresponding to numpy array
indexing dimensions (M, N, P) as in volume.

2.2. API Reference 31

voxelmap, Release 4.3

gradient_direction
[string, optional] Controls if the mesh was generated from an isosurface with gradient descent toward
objects of interest (the default), or the opposite, considering the left-hand rule. The two options are:
– ‘descent’ : Object was greater than exterior – ‘ascent’ : Exterior was greater than object

step_size
[int, optional] Step size in voxels. Default 1. Larger steps yield faster but coarser results. The result
will always be topologically correct though.

allow_degenerate
[bool, optional] Whether to allow degenerate (i.e. zero-area) triangles in the end-result. Default True.
If False, degenerate triangles are removed, at the cost of making the algorithm slower.

method: str, optional
One of ‘lewiner’, ‘lorensen’ or ‘_lorensen’. Specify which of Lewiner et al. or Lorensen et al. method
will be used. The ‘_lorensen’ flag correspond to an old implementation that will be deprecated in
version 0.19.

mask
[(M, N, P) array, optional] Boolean array. The marching cube algorithm will be computed only on
True elements. This will save computational time when interfaces are located within certain region of
the volume M, N, P-e.g. the top half of the cube-and also allow to compute finite surfaces-i.e. open
surfaces that do not end at the border of the cube.

plot: bool
plots a preliminary 3-D triangulated image if True

MeshView(color='black', alpha=1, wireframe=True, wireframe_color='white', background_color='#ffffff',
viewport=[1024, 768])

Triangulated mesh view with PyVista

Parameters

objfile: string
.obj file to process with MeshView [in GLOBAL function only]

color
[string / hexadecimal] mesh color. default: ‘pink’

alpha
[float] opacity transparency range: 0 - 1.0. Default: 0.5

wireframe: bool
Represent mesh as wireframe instead of solid polyhedron if True (default: False).

wireframe_color: string / hex
edges or wireframe colors

background_color
[string / hexadecimal] color of background. default: ‘pink’

viewport
[(int,int)] viewport / screen (width, height) for display window (default: 80% your screen’s width &
height)

build()

Builds voxel model structure from python numpy array

32 Chapter 2. Contents

voxelmap, Release 4.3

draw(coloring='none', geometry='voxels', scalars='', background_color='#cccccc', wireframe=False,
wireframe_color='k', window_size=[1024, 768], voxel_spacing=(1, 1, 1), show=True)

Draws voxel model after building it with the provided array with PyVista library

Parameters

coloring: string

voxel coloring scheme

• ‘custom’ –> colors voxel model based on the provided keys to its array integers, defined in the
hashblocks variable from the Model class

• ‘custom: #8599A6’ –> color all voxel types with the #8599A6 hex color (bluish dark gray) and
an alpha transparency of 1.0 (default)

• ‘custom: red, alpha: 0.24’ –> color all voxel types red and with an alpha transparency of 0.24

• ‘cmap : {colormap name}’ : colors voxel model based on a colormap; assigns colors from the
chosen colormap to the defined array integers

• ‘cmap : viridis’ –> colormap voxel assignment with the viridis colormap

• ‘cmap : hot’, alpha: 0.56 –> voxel assignment with the hot colormap with an alpha transparency
of 0.56

• ‘none’ –> no coloring

• ‘cool’ cool colormap

• ‘fire’ fire colormap

• and so on. . .

geometry: string
voxel geometry. Choose voxels to have a box geometry with geometry=’voxels’ or spherical one with
geometry=’particles’

scalars
[list] list of scalars for cmap coloring scheme

background_color
[string / hex] background color of pyvista plot

wireframe: bool
Represent mesh as wireframe instead of solid polyhedron if True (default: False).

wireframe_color: string / hex
edges or wireframe colors

window_size
[(float,float)] defines plot window dimensions. Defaults to [1024, 768], unless set differently in the
relevant theme’s window_size property [pyvista.Plotter]

voxel_spacing
[(float,float,float)] changes voxel spacing by defining length scales of x y and z directions (de-
fault:(1,1,1)).

show
[bool] Display Pyvista 3-D render of drawn 3-D model if True (default: True)

2.2. API Reference 33

voxelmap, Release 4.3

draw_mpl(coloring='custom', edgecolors=None, figsize=(6.4, 4.8), axis3don=False)
Draws voxel model after building it with the provided array (Matplotlib version. For faster graphics, try
the draw() method (uses PyVista)).

Parameters

coloring: string

voxel coloring scheme

• ‘custom’ –> colors voxel model based on the provided keys to its array integers, defined in the
hashblocks variable from the Model class

• ‘custom: #8599A6’ –> color all voxel types with the #8599A6 hex color (bluish dark gray) and
an alpha transparency of 1.0 (default)

• ‘custom: red, alpha: 0.24’ –> color all voxel types red and with an alpha transparency of 0.2

• ‘nuclear’ colors model radially, from center to exterior

• ‘linear’ colors voxel model vertically, top to bottom.

edgecolors: string/hex
edge color of voxels (default: None)

figsize
[(float,float)] defines plot window dimensions. From matplotlib.pyplot.figure(figsize) kwarg.

axis3don: bool
defines presence of 3D axis in voxel model plot (Default: False)

hashblocks_add(key, color, alpha=1)
Make your own 3-D colormap option. Adds to hashblocks dictionary.

Parameters

key
[int] array value to color as voxel

color
[str] color of voxel with corresponding key index (either in hexanumerical # format or default python
color string)

alpha
[float, optional] transparency index (0 -> transparent; 1 -> opaque; default = 1.0)

load(filename='scene.json', coords=False)
Load to Model object.

34 Chapter 2. Contents

voxelmap, Release 4.3

Parameters

filename: string (.json or .txt extensions (see above))
name of file to be loaded (e.g ‘scene.json’)

coords: bool
loads and processes self.XYZ, self.RGB, and self.sparsity = 10.0 (see Model class desc above) to
Model if True. This boolean overrides filename loader option.

make_intensity()

Turn image into intensity matrix i.e. matrix with pixel intensities. Outputs self.array as mutable matrix to
contain relative pixel intensities in int levels [for file if specified]

resize_intensity(res=1.0, res_interp=3)
Resize the intensity matrix of the provided image.

Parameters

res
[float, optional] relative resizing percentage as x times the original (default 1.0 [1.0x original dimen-
sions])

res_interp: object, optional
cv2 interpolation function for resizing (default cv2.INTER_AREA)

save(filename='scene.json')
Save sparse array + color assignments Model data as a dictionary of keys (DOK) JSON file

Parameters

filename: string
name of file (e.g. ‘scene.json’) Data types: .json -> voxel data represented as (DOK) JSON file .txt ->
voxel data represented x,y,z,rgb matrix in .txt file (see Goxel .txt imports)

voxelmap

voxelmap

2.2. API Reference 35

voxelmap, Release 4.3

36 Chapter 2. Contents

CHAPTER

THREE

EXAMPLES

3.1 Voxel Model to 3-D Mesh

Voxelmap can transform a voxel model from Goxel, which is saved as a text file (.txt), into a more lifelike 3D mesh
using the Marching Cubes algorithm. You can start by downloading the .txt file, which can be achieved by entering a
certain text in your command line.

>>> wget https://raw.githubusercontent.com/andrewrgarcia/voxelmap/main/model_files/skull.
→˓txt

Then in the same directory, create skull.py script with the following code:

#skull.py
import voxelmap as vxm

model = vxm.Model()

model.load('extra/skull.txt')

arr = model.array

model.array = model.array[::-1]

'draw in standard voxel form'
model.draw('voxels',wireframe=True, background_color='#3e404e',window_size=[700,700])

'to convert to mesh'
model.MarchingMesh()
model.MeshView(wireframe=True,alpha=1,color=True,background_color='#b064fd',
→˓viewport=[700,700])

Running the above script will give you the below image

37

voxelmap, Release 4.3

3.2 3-D Reconstruction

You can easily create stunning 3D models from images with voxelmap! This software package provides powerful
geometric algorithms designed to reconstruct images, with a primary focus on generating very simple depth fields from
pixel intensity values. These algorithms include ImageMesh, which produces compact, low-poly models from images,
and the well-known MarchingMesh algorithm, which creates detailed mesh representations at a higher computational
cost.

With just a few lines of code, you can use this package to transform 2D images into high-quality, immersive 3D models
in the widely-used .obj format.

*Photo used with permission from the @galacticeffect. Check out his music available at Spotify, also featured in

38 Chapter 3. Examples

https://www.instagram.com/galacticeffect/
https://www.instagram.com/galacticeffect/
https://open.spotify.com/artist/0d6aO1iQVWyxsN8UHfmHjm

voxelmap, Release 4.3

@themidnightgospel

In the example below, the above artist portrait is loaded as a file to the Model class to create a 3-D model with the local
MarchingMesh method, which generates an .obj file in the process:

#galactic.py
import voxelmap as vxm

model = vxm.Model(file='galactic.png') # load image
model.objfile = 'galactic.obj' # set name of 3-D model file (.obj) to be made
model.MarchingMesh(25) # make 3-D model from image.

Once you have the .obj file, you can import it into popular graphic editing software such as Blender for further cus-
tomization and rendering. Alternatively, you can visualize the 3D model using the voxelmap library by calling the local
model.MeshView() method after the last line of the script.

Unleash your creativity with this user-friendly protocol for 3D reconstruction from images.

3.2.1 Coming Soon : AI-based 3-D Reconstruction

With voxelmap, we are committed to continually improving our project with the latest technological advancements. As
part of our ongoing development, we are planning to introduce more advanced methods for 3-D reconstruction using
artificial intelligence in a future release, version 5.0.

3.2. 3-D Reconstruction 39

https://www.instagram.com/themidnightgospel/

voxelmap, Release 4.3

*Photo used with permission from the @galacticeffect. Check out his music available at Spotify, also featured in
@themidnightgospel

These new method(s) will provide higher quality 3-D reconstruction, and enable users to go from image to 3-D model
with just one line of code. Our aim is to democratize the 3-D modeling process and make it more accessible to everyone.

40 Chapter 3. Examples

https://www.youtube.com/watch?v=UlZmtAqZEmQ
https://www.instagram.com/galacticeffect/
https://open.spotify.com/artist/0d6aO1iQVWyxsN8UHfmHjm
https://www.instagram.com/themidnightgospel/

CHAPTER

FOUR

WHITEPAPERS

4.1 ImageMesh : A Convex Hull based 3D Reconstruction Method

Andrew R. Garcia

garcia.gtr@gmail.com

4.1.1 Abstract

ImageMesh is a method available in versions ≥ 2.0 of the voxelmap Python library that generates 3D models from
images using Convex Hull in 3-D to enclose external points obtained from a series of partitioned point clouds. These
point clouds are generated by assigning the relative pixel intensities from the partitioned images as the depth dimension
to the points. In this paper, we describe the limitations of the original ImageMesh method and the quick solution we
have implemented to address them. Additionally, we introduce MeshView, a Python visualization tool developed in
tandem with ImageMesh that provides a convenient way to visualize the 3D models generated by ImageMesh. Finally,
we discuss the GPU memory space complexity of both methods.

4.1.2 Introduction

Fig. 1: An image of a crochet donut

ImageMesh is a 3D reconstruction method. It utilizes Convex Hull in 3-D to enclose external points obtained from a
series of partitioned point clouds, which are generated by assigning the relative pixel intensities from the partitioned

41

mailto:garcia.gtr@gmail.com

voxelmap, Release 4.3

Fig. 2: 3-D reconstruction of donut image to voxel cloud done by transforming relative pixel intensities to 3-D depth
with the ImageMap method.

Fig. 3: 3-D reconstruction of donut image with the ImageMesh method.

42 Chapter 4. Whitepapers

voxelmap, Release 4.3

images as the depth dimension to the point clouds. ImageMesh and ImageMap methods utilize the CCIR 601 luma
protocol to transform input images into 2-dimensional “intensity” matrices that represent relative grayscale values.
These intensity values are then mapped to the depth dimension to form third-order arrays. ImageMesh generates 3-D
model .obj files from images by drawing the smallest collection of triangular polygons that satisfies this rule in three-
dimensional space. In simpler terms, it’s like placing a fabric over a 3-D object. However, it is important to note that a
single convex hull operation may fail to draw a structure with holes or bumps, which are essentially 2-D local extrema.

To address this limitation, we have implemented a quick solution that involves partitioning the input image into multiple
segments and placing 3-D convex hull “sheets” on each segment to perform triangulation. Figure 3 shows how this
partitioning can process more local extrema with the 3-D Convex Hull method and create more realistic 3-D recon-
structions.

Fig. 4: Schematic representation of the performance of ImageMesh with more segments.

In the Figure 4, blurring is performed to create a more realistic 3-D texture with the ImageMesh method. Blurring
an image can be thought of as a process of smoothing out the details in the image by reducing the contrast between
adjacent pixels. This results in a 3-D effect where the image appears to have a more uniform and continuous surface.
Instead of sharp edges and abrupt changes in color or texture, blurred images have a softer and more gradual transition
between different parts of the image.

Complementing ImageMesh is MeshView, a Python visualization tool developed in tandem to provide a convenient
way to visualize the 3D models generated by ImageMesh. MeshView is capable of loading the .obj files generated by
ImageMesh and rendering them in a PyVista VTK window, allowing for interactive 3D visualization of the models

4.1. ImageMesh : A Convex Hull based 3D Reconstruction Method 43

voxelmap, Release 4.3

Fig. 5: Blurring of former image to create a smoother 3-D texture with ImageMesh.

Fig. 6: The graphical effect of increasing the number of 3-D Convex Hull (CH) sectors in each column. The left column
shows 1 CH sector, the middle column shows 4 CH sectors, and the right column shows 16 CH sectors.

44 Chapter 4. Whitepapers

voxelmap, Release 4.3

4.1.3 Time Complexity

When using a voxel-based approach for 3-D reconstruction from an image, that is, converting the 2-D image to a voxel
cloud, the time complexity for converting the 2-D image to a voxel cloud is 𝒪(𝑤ℎ𝑑), where 𝑤 and ℎ are the width and
height of the image, and 𝑑 is the depth of the voxel cloud. In comparison, the ImageMesh method for 3-D reconstruction
involves 3 main steps which have its own computational complexity. In the next paragraphs we elaborate on the steps
for this method and their associated time complexities.

In the first step, the image is sliced into equally-sized sectors: 𝒪(𝑤ℎ), where 𝑤 is the width of the image and ℎ is its
height. After this, each of the 2-D sectors are mapped to 3-D point clouds, with a time complexity 𝒪(𝑤ℎ), where w
and h are the width and height of the image.

3-D Convex Hull is then performed on each of these point clouds with 𝒪(𝑛 log 𝑛), where 𝑛 is the number of points in
each 3-D point cloud. For this last step, we use the scipy.spatial.ConvexHull algorithm for computing the convex
hull of the 3-D point clouds. Th algorithm uses a divide-and-conquer approach based on the QuickHull algorithm,
which has an average case time complexity of 𝒪(𝑛 log 𝑛). This makes the scipy.spatial.ConvexHull algorithm
efficient for computing the convex hull of a 3-D point cloud, especially for larger datasets. However, the time complexity
for the worst-case scenario of QuickHull is𝒪(𝑛2), which means that in some cases, the scipy.spatial.ConvexHull
algorithm may take longer to run.

Therefore, the overall time complexity of ImageMesh can be estimated as 𝒪(𝑤ℎ𝑛 log 𝑛), where 𝑤 and ℎ are the width
and height of the image, and 𝑛 is the number of points in each 3-D point cloud.

When considering the time complexity of the two methods, it is clear that ImageMesh, a method which generates
a single mesh with multiple steps, has a higher computational cost than the voxel-based approac, a method which
generates multiple voxel meshes. However, it is important to note that the graphical manipulation of the single mesh
is superior to the latter method. This is because a single mesh can update all its defined vertices more efficiently than
updating multiple voxel meshes.

As a result, ImageMesh is more suitable for applications that require real-time graphical manipulation or rendering,
where the speed of the graphics processing is crucial. On the other hand, the voxel mesh method may be more appro-
priate for applications where the accuracy of the reconstruction is more important than the graphical performance, and
where the computational cost can be distributed over multiple processors or computer nodes.

4.1.4 Conclusion

ImageMesh, coupled with MeshView, provides a powerful and efficient 3D reconstruction method. By implementing
the Convex Hull-based method with partitioning, we have addressed the limitation of a single convex hull operation
and increased the resolution of the reconstructed 3D models. With the reduction in GPU space complexity, the new
method has become more practical for real-world applications.

4.1. ImageMesh : A Convex Hull based 3D Reconstruction Method 45

voxelmap, Release 4.3

46 Chapter 4. Whitepapers

PYTHON MODULE INDEX

v
voxelmap, 35

47

voxelmap, Release 4.3

48 Python Module Index

INDEX

Symbols
__init__() (voxelmap.Model method), 30

B
build() (voxelmap.Model method), 32

D
draw() (voxelmap.Model method), 32
draw_mpl() (voxelmap.Model method), 33

H
hashblocks_add() (voxelmap.Model method), 34

I
ImageMap() (voxelmap.Model method), 30
ImageMesh() (voxelmap.Model method), 31

L
load() (voxelmap.Model method), 34
load_array (class in voxelmap), 27
load_from_json (class in voxelmap), 27

M
make_intensity() (voxelmap.Model method), 35
MarchingMesh (class in voxelmap), 28
MarchingMesh() (voxelmap.Model method), 31
matrix_toXY (class in voxelmap), 26
MeshView (class in voxelmap), 29
MeshView() (voxelmap.Model method), 32
Model (class in voxelmap), 30
module

voxelmap, 35

O
objcast (class in voxelmap), 26

R
random_kernel_convolve (class in voxelmap), 28
resize_array (class in voxelmap), 27
resize_intensity() (voxelmap.Model method), 35
roughen (class in voxelmap), 27

S
save() (voxelmap.Model method), 35
save_array (class in voxelmap), 27

T
tensor_toXYZ (class in voxelmap), 27
tojson (class in voxelmap), 27

V
voxelmap

module, 35

49

	Let’s make 3-D models with Python!
	Key Features
	Colab Notebook

	Contents
	Usage
	Installation
	The hashblocks Constructor Variable
	Draw voxels from integer arrays
	Draw voxels from coordinate arrays
	Colormap Block Coloring
	Colormap Block Coloring with Integer Tagging

	3-D Mapping of an Image
	Low-Poly 3-D Mesh Mapping from Image
	MarchingMesh : Turning Voxel Models to 3-D Mesh Representations
	Wavefront (.obj) file to 3-D Sparse Array
	Cube Model
	Sphere Model
	3-D Model Numpy Manipulation and Blender Integration

	3-D Voxel Model Reprocessing
	Re-color with custom colors
	using the hashblocks_add() method
	defining them directly in the hashblocks dictionary

	Save and Load Methods for voxelmap Model objects
	Save the ghost dog model
	Load ghost dog model

	API Reference
	Global Methods
	Special
	Parameters
	Parameters
	Parameters

	Load and Save
	Array Manipulation
	Parameters
	Parameters
	Parameters

	Mapping
	Parameters
	Parameters

	Local Methods to Model class
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters
	Parameters
	voxelmap

	Examples
	Voxel Model to 3-D Mesh
	3-D Reconstruction
	Coming Soon : AI-based 3-D Reconstruction

	Whitepapers
	ImageMesh : A Convex Hull based 3D Reconstruction Method
	Abstract
	Introduction
	Time Complexity
	Conclusion

	Python Module Index
	Index

